The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells.
نویسندگان
چکیده
Silica-based materials with favourable biocompatibility are generally considered as excellent candidates for applications in biomedical fields. However, previous researches mainly focused on the safety of silica-based materials, their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) still need further investigations. In this study, core-shell fluorescent silica nanoparticles (silica NPs) with three different sizes (S1 ~ 50 nm, S2 ~ 200 nm, S3 ~ 400 nm, respectively) were prepared according to the Stöber method. The silica NPs with different sizes did not affect the cell viability (even up to a concentration of 500 µg ml-1), showing size- and dose-independent cytocompatibility of silica NPs on hMSCs. Uptake of silica NPs significantly enhanced the activity of alkaline phosphatase (ALP) and the formation of bone-like nodules of hMSCs after osteogenic induction. At the concentration of 10 µg ml-1, after treating hMSCs with larger sized silica NPs (S2 and S3), higher ALP activity of hMSCs was measured and larger sized bone-like nodules were formed by hMSCs compared with that treated with smaller sized silica NPs (S1).The enhanced osteogenic potential of hMSCs treated with silica NPs may be attributed to the Si released from silica NPs due to the lysosomal degradation inside hMSCs. These results demonstrate the stimulatory effect of silica NPs on osteogenic differentiation of hMSCs and the application potential of silica NPs in bone tissue engineering.
منابع مشابه
Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کاملNaringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملThe osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells
Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical materials
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2016